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Abstract —The aim of this study is to investigate the effects of a uniform electric field on bubbles. Numerical analyses have been
carried out in order to determine the shape of an axisymmetric conducting bubble immersed in an isothermal dielectric fluid.
A detailed analysis of the interfacial electric stresses acting on the liquid–vapour conducting interface is discussed. This study shows
a deformation of the bubble in the electric field direction and also electroconvective movements within and around the conducting
bubble. The electroconvective movements are analysed on the basis of the creeping flow approximation. A comparison between the
conducting bubble shape and the dielectric bubble one is also presented.  2000 Éditions scientifiques et médicales Elsevier SAS

bubble / heat transfer enhancement / electrohydrodynamic effect / electric field

Résumé —Etude du comportement d’une bulle dans un champ électrique : forme de la bulle et mouvement local du fluide. Cet
article concerne l’étude des effets d’un champ électrique uniforme sur une bulle. La forme d’une bulle conductrice axisymétrique, au
sein d’un fluide diélectrique uniforme, a été calculée numériquement. Une analyse détaillée des contraintes interfaciales agissant
sur l’interface conductrice liquide–vapeur est présentée. Cette étude montre une déformation de la bulle dans la direction du
champ électrique et met en évidence le rôle des mouvements électroconvectifs à l’intérieur et autour de la bulle. Ces mouvements
électroconvectifs ont été déterminés en supposant un écoulement rampant. Une comparaison entre les formes des bulles conductrices
et diélectriques est aussi présentée.  2000 Éditions scientifiques et médicales Elsevier SAS

bulle / augmentation des échanges thermiques / effet électrohydrodynamique / champ électrique

Nomenclature

a thermal diffusivity . . . . . . . . . . . m2·s−1

D electric displacement vector . . . . . F·V·m−2

er, eθ unit radial and orthoradial vectors
E electric field strength . . . . . . . . . V·m−1

fs electric stress . . . . . . . . . . . . . . N·m−2

fv volume force . . . . . . . . . . . . . . N·m−3

fvis viscous stress . . . . . . . . . . . . . N·m−2

g gravitational acceleration . . . . . . . m·s−2

j current density . . . . . . . . . . . . . A·m−2

n unit normal vector
P pressure . . . . . . . . . . . . . . . . Pa
Pn Legendre polynomial
qs electrical surface charge density . . . C·m−2

* Correspondence and reprints.
m.lal@cethil.insa-lyon.fr

qv electrical volume charge density . . . . . . C·m−3

r radial coordinate . . . . . . . . . . . . . . . m
r∗ dimensionless radius
R bubble radius . . . . . . . . . . . . . . . . . m
Re Reynolds number
t unit tangential vector
tc characteristic time . . . . . . . . . . . . . . s
u radial velocity . . . . . . . . . . . . . . . . m·s−1

u∗ dimensionless radial velocity= u/U∗
U∗ maximum liquid velocity . . . . . . . . . . m·s−1

v orthoradial velocity . . . . . . . . . . . . . m·s−1

v∗ dimensionless orthoradial velocity= v/U∗
V electrical potential . . . . . . . . . . . . . . V
X = ρel/ρev
Y = εrl/εrv
Greek symbols

ε dielectric permittivity . . . . . . . . . . . . F·m−1

ε0 vacuum dielectric permittivity . . . . . . . . F·m−1
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εr relative dielectric permittivity
µ dynamic viscosity . . . . . . . . . . . Pa·s
µ∗ dimensionless coordinate= cosθ
θ angular coordinate
ρe electrical resistivity . . . . . . . . . . �·m
ρ density . . . . . . . . . . . . . . . . . kg·m−3

σ surface tension . . . . . . . . . . . . . N·m−1

σe electrical conductivity . . . . . . . . . �−1·m−1

τ relaxation time . . . . . . . . . . . . . s
ψ stream function
ζ(θ) bubble deformation . . . . . . . . . . m
ζ ∗ dimensionless coordinate= ζ/R
Subscripts

j liquid or vapour
l liquid
n normal
0 applied electric field
t tangential
v vapour
x horizontal component
z vertical component

1. INTRODUCTION

An electric field can be an efficient method to en-
hance nucleate boiling heat transfer [1, 2]. The Electro-
HydroDynamical (EHD) boiling process has been used
in many industries such as in refrigerating units [3].
Large enhancements have been achieved by Ohadi [4]
in a shell-and-tube heat exchanger. The great interest in
use of the electric field in conjunction with boiling re-
sults from: (i) the nucleate pool boiling heat transfer en-
hancement [5], (ii) the increase of the Critical Heat Flux
(CHF) [6], (iii) the elimination of boiling hysteresis [7],
and (iv) film boiling has been found to be deferred to
higher values in presence of an electric field [8].

Several fundamental studies have been carried out
in order to understand the basic mechanisms. In these
studies, the electric field effects on the bubbles have been
particularly studied because the change in the bubble
behaviour in the presence of an electric field is one of
the main reasons for the heat transfer enhancement. The
experimental and theoretical researches can be classified
into two groups.

The first group deals with the electric field effect on
bubbles or drops immersed in an isothermal dielectric
medium. Garton and Krasucki [9] have shown that a
bubble, subjected to an electric field between two parallel
plate electrodes, assumes the shape of a prolate spheroid
in the direction of the field. They show that bubbles,

for which the dielectric permittivity exceeds twenty
times the medium permittivity, elongate until a critical
shape is reached, then bubbles become unstable. Bubbles
of dielectric permittivity ratio lower than 20 elongate
indefinitely when the electric field increases. Miksis [10]
shows theoretically that, when the dielectric permittivity
of a drop is larger than a critical value, the drop develops
two obtuse-angled conical points at its ends for a certain
electric field strength. For dielectric permittivities lower
than the critical value, the drop elongates and keeps its
nearly prolate spherical shape without developing conical
points as the field is increased.

The second group deals with the electric field effect on
bubbles attached to a wall in isothermal conditions [11–
14] or non-isothermal conditions [15, 16]. Cheng and
Chaddock [11] extended the Fritz’s analysis on maximum
bubble volume during boiling under zero-field conditions
to the EHD conditions. They found that the bubble
departure size decreases as the electric field strength or
the dielectric permittivity of the fluid increase. Ogata
and Yabe [12] have obtained the following conclusions
from experimental results: the bubbles in the electric
field are pushed against the grounded wall by the vertical
component of the electric stresses and move horizontally
due to the horizontal component. They attribute this
effect to the fact that the horizontal component of the
electric stresses is more than four times larger than the
vertical component. More recently, Cho et al. [13] have
investigated numerically and experimentally the effects
of uniform DC electric fields on a bubble attached to
a wall. In their numerical analysis, the bubble is found
to be extended in a direction parallel to the applied
electric field. The elongation increases as the electric field
strength increases. Consequently, the contact angle also
increases with an increase of the electric field strength
if the contact radius is fixed. If the contact angle is
fixed, the contact radius decreases as the electric field
strength increases. Moreover, Kweon et al. [14] studied
experimentally the effect of the uniformity of the electric
field on the deformation and the departure volume of
a bubble under DC/AC electric field. For DC electric
field, the bubble departure volume in a nonuniform
electric field decreases continuously, while in a uniform
electric field it remains nearly constant. For AC electric
field, the departure process of a bubble is associated
with the bubble oscillation and the applied voltage. The
bubble departure volume drops suddenly near a critical
voltage and the decrease of the bubble departure volume
is greater in an AC than in a DC electric field. By
considering the presence of the thermal boundary layer,
Ogata et al. [15, 16] showed that, for a bubble deformed
in an electric field, the area of the thin liquid film
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at the bottom of the bubble is enlarged. An analytical
simulation indicates that this shape is due to the weaker
electric field strength in the thermal boundary layer than
in the saturated region, resulting in a weaker electric
stress.

In spite of the large number of studies on the bubble
behaviour, the bubble elongation under an electric field
has often been considered assuming a liquid–vapour in-
terface without electrical free charges. However, although
the electrical conductivity of either phase is small, the
charge associated with steady currents adds up at the in-
terface till the steady state is achieved. In the present
study, the effects of an electric field on the bubble in the
presence of electrical free charges at the liquid–vapour
interface is considered. For this purpose, the effects of
electrical parameters, such as electrical conductivity, di-
electric permittivity and the electric field strength on the
bubble shape are investigated under isothermal condi-
tions.

2. ELECTROHYDRODYNAMIC
EQUATIONS

With EHD phenomena, the basic momentum and en-
ergy equations are modified by appropriate terms. They
are written with in addition the electrical equations and
appropriate boundary conditions for an incompressible
fluid with the purpose of outlining the main physical as-
pects and the importance of the assumptions. We will dis-
tinguish equations that are relative to the electrodynamic
aspect and those relative to the hydrodynamic one.

2.1. Electrodynamic equations

Let us consider the basic electrical laws defining the
problem. A prominent feature of electrohydrodynamic
interactions is the fact that the electric field,E, is
irrotational. Dynamic currents are so small that the
magnetic induction is negligible and the appropriate laws
are mainly those of electrostatics, as summarised below:

curlE = 0 (1)

D = εE (2)

∇ ·D = qv (3)

j = σeE + qvu+ ∂D
∂t

(4)

∇ · j = 0 (5)

TABLE I
Relaxation time for different dielectric fluids.

Fluid P (bar) Tsat (◦C) εrl λe (�
−1·m−1) τ (s)

n-pentane 1 36 1.80 6.7·10−9 2.4·10−3

R-113 1 47 2.40 1·10−11 2.12
R-123 1 28 3.42 3.4·10−8 0.9·10−3

In equation (3), the electrical free charges densityqv
are expressed in terms of the electric displacementD.
The current density is the sum of three terms: the first
term,σeE, is the contribution of the electrical conduction
in the medium, the second term,qvu, is due to the free
charge convection and the third term is due to the electric
displacement variations with time. The conservation of
free charges is expressed by equation (5).

Even though electrical conduction in fluids is often
poorly characterised by the Ohm law(j = σeE), this
simple conduction law can be used to make some impor-
tant conclusions. By considering equations (2)–(5) writ-
ten for the steady state, an equation for the electrical free
charge density is obtained

qv = 1

τ
D · ∇τ (6)

This equation shows that the appearance of the electrical
free charges is due to a gradient of the quantityτ = ε/σe
which is a characteristic of a fluid. The relaxation time,τ ,
represents the time needed by a free charge to relax from
the fluid to its external boundary (liquid–vapour interface
for example). From the relaxation time, we can determine
if the liquid behaves like an insulating fluid or not by
comparing its value to the dynamically characteristic
time tc which can be the period of the imposed electric
field [17], the period of the mechanical oscillations of
a liquid–vapour interface [18], the detachment period
of bubbles [5], etc. Then, iftc � τ , the fluid can be
considered as highly insulating and the electric field is
distributed within both the liquid and the vapour. In this
case, no electrical free charges appear within either the
media or the liquid–vapour interface. At the opposite,
if tc� τ , the electric field is totally excluded from the
liquid, which behaves as a conducting fluid, and the entire
voltage drop occurs at the liquid–vapour interface where
electrical free charges appear. The values ofτ for some
dielectric fluids are shown intable I.

2.2. Hydrodynamic equations

The set of equations written for an incompressible
fluid is as follows:
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Figure 1. Electric stresses acting on an interface.

∇ · u= 0 (7)

ρ
Du

Dt
=−∇P + f v + ρg+µ∇2u (8)

DT

Dt
= a∇2T + σeE

2

ρcp
(9)

DT/Dt is termed the material derivative.

The momentum equation (8) involves an additional
term, which represents the electric force acting on the
fluid. This force is due, on the one hand, to the electrical
free charges that contribute to conduction and to convec-
tion currents, on the other hand, to the polarisation of the
medium. This force is given by [19]

f v = qvE − 1

2
E2∇ε+ 1

2
∇
(
ρ
∂ε

∂ρ
E2
)

(10)

The first term is the Coulomb force exerted on the space
electric charges within the dielectric fluid. The second
term is the dielectrophoretic force due to the spatial gra-
dient of the dielectric permittivity in the fluid. Physically,
this force acts on polarisation charges appearing in the di-
electric medium under the electric field effect. The third
term is the electrostriction force due to the variation of the
dielectric permittivity with the density and to the nonuni-
formity of the electric field in the medium. The expres-
sion of the electrostriction force can be simplified in the
case of nonpolar fluids by using the Clausius–Mossotti
law

ρ
∂ε

∂ρ
= (ε− 1)(ε+ 2)

3ε0
(11)

In order to study the electric force effect on an interface
between two fluids, the electric forcef v can be expressed
as a stress (Maxwell stress) by using the Gauss’ theorem
as follows [19]:

f sj = εj (n ·E)j ·Ej −
εj

2
E2
j

(
1− ρ

ε

dε

dρ

)
j

nj (12)

wherej is the liquid or the vapour subscript andnj is the
unit normal component in each phase.

The liquid–vapour interface is submitted to the resul-
tant of two stresses (figure 1), that is

f s= f sl+ f sv (13)

Rearranging this equation yields the following expres-
sions for the normal and tangential components of the
electric stress (see Appendix):

f sn=
1

2

[
εl
(
E2

ln −E2
lt

)− εv
(
E2

vn−E2
vt

)
+ρl

dεl

dρl
E2

l − ρv
dεv

dρv
E2

v

]
nl (14)

f st= (εlElnElt − εvEvnEvt)t l

= (εlEln − εvEvn)Evtt l = qsEvtt l (15)

wherenl is the unit normal vector directed towards the
liquid phase andt l is the tangential vector to the liquid–
vapour interface.qs is the electrical charge density ap-
pearing at the liquid–vapour interface due to the electric
field strength imbalance along the liquid–vapour inter-
face.

The tangential component (equation (5)) is the
Coulomb stress generated on the liquid–vapour interface
by the electric field. When a fluid in a two-phase system is
considered as perfectly insulating, there is no free charge
density acting on the liquid–vapour interface and only the
normal component of the electric stress acts on the inter-
face. For a more conducting fluid, the liquid–vapour in-
terface can be regarded as perfectly conducting and the
electric field has only a normal component. By contrast
with these two limiting cases, tangential electric stresses
act on the liquid–vapour interface. This latter case is the
subject of this study.
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3. ELECTRIC STRESSES ACTING ON A
CONDUCTING BUBBLE

The analysis of the effect of the electric stresses on
the liquid–vapour interface requires the knowledge of the
electric field distribution around and within a conducting
bubble.

3.1. Electric field distribution within
and around a conducting bubble

The electric potential distribution for a spherical con-
ductor immersed in an other conductor is known [19]. If
ρel andρev are the electrical resistivities of the liquid and
the vapour phases, respectively,R the radius of the bub-
ble andE0 the uniform electric field far from the bubble,
the electric potentialsVl andVv outside and inside the
bubble are expressed in spherical coordinates (figure 2)
as follows:

Vl =−E0 cosθ

[
r + 1−X

2+X
R3

r2

]
(16)

Vv =−3E0r cosθ

2+X (17)

whereX = ρel/ρev.

From the above equations, the electric field distribu-
tion in the liquid and the vapour phases can be obtained.

Figure 2. Freely bubble immersed in a dielectric medium in
EHD conditions.

In the liquid phase, the normal and the tangential compo-
nents of the electric field are

Eln =E0 cosθ

[
1− 2(1−X)

2+X
R3

r3

]
(18)

Elt =−E0 sinθ

[
1+ 1−X

2+X
R3

r3

]
(19)

For the vapour side, these components are

Evn=−
(
∂Vv

∂r

)
r=R
= 3E0 cosθ

2+X (20)

Evt =−
(

1

r

∂Vv

∂θ

)
r=R
=−3E0 sinθ

2+X (21)

If the liquid–vapour interface supports no electrical
free charges, it is shown [20] that the same equations,
as written above, are obtained by replacingX with

(a)

(b)

Figure 3. Electric field streamlines within and around a spheri-
cal bubble. (a) Dielectric bubble, (b) conducting bubble.
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Figure 4. Electric field direction effect on the electrical free charge distribution at the bubble interface.

1/Y = εv/εl . In figure 3a are given the electric field
distributions within and around a spherical dielectric
bubble(1/Y = 0.5, R = 1 mm) for a 5 kV·cm−1 electric
field strength. In the vapour phase, the electric field is
uniform. However, in the liquid phase, near the liquid–
vapour interface, there is an electric field distortion due
to the presence of the bubble. Far away from the bubble,
the electric field is uniform and its strength is equal to
that of the applied electric field. Infigure 3bare given the
electric field distributions within and around a spherical
conducting bubble (X = 0.25, R = 1 mm) for the same
applied electric field strengthE0 as in the previous case.
The electric field streamlines have a tendency to be
normal to the liquid–vapour interface.

The appearance of free electrical charges at the liquid–
vapour interface is due to a discontinuity of the normal
electric field component. The electrical charge density is

qs= ε0εrl

(
∂Vv

∂r

)
r=R
− ε0εrv

(
∂Vl

∂r

)
r=R

= 3ε0εrvE0 cosθ

(
YX− 1

2+X
)

(22)

whereY = εrl/εrv = εl/εv.

The sign of the electrical free charges depends on
the electric field direction, the electric field strength and
the product of the liquid to vapour permittivity ratio,Y
and that of electrical resistivity,X. When the electric
field is directed towards the heat transfer surface (positive
polarity) and if XY < 1, the bubble tip surface bears
electrical free charges opposite in sign to the electrode
that it faces (figure 4a). On the other hand, ifXY > 1,
the bubble tip surface bears electrical free charges of the

same sign as the electrode that it faces. At the opposite, if
the electric field direction is inverted (negative polarity),
the electrical free charges distribution on the bubble
interface is also inverted (figure 4b).

3.2. Electric stress expressions

The normal and the tangential components of the elec-
tric stress acting on a conducting bubble are expressed as
follows (see Appendix):

fsn= 9ε0E
2
0

2(2+X)2
[
(εrl − 1)2

3
+
{(

ε2
rl + 4εrl − 2

3

)
X2

−
(
ε2

rl − 2εrl + 4

3

)}
cos2 θ

]
(23)

fst=−9ε0εrvE
2
0

(2+X)2 (YX− 1)sinθ cosθ (24)

The normal electric stress can be rewritten in the follow-
ing form (see Appendix):

fsn= 9ε0E
2
0

2(2+X)2 (α cos2 θ − β) (25)

where

α =
(
ε2

rl + 4εrl − 2

3

)
X2−

(
ε2

rl − 2εrl + 4

3

)
(26)

β =− (εrl − 1)2

3
The normal components offsn acting on the bubble
interface can be decomposed into horizontal and vertical
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(a)

(b)

Figure 5. Electric stresses acting on a conducting bubble
interface. (a) Normal electric stresses, (b) tangential electric
stresses.

ones, fsnx and fsnz, respectively. Variations offsnx
and fsnz along the liquid–vapour interface, forE0 =
20 kV·cm−1, are plotted as a function of the angular
coordinateθ in figure 5a. The electrical resistivities
ratio X is equal to 0.25. The horizontal component
strength is maximum at the bubble equator where it is
directed towards the vapour phase and contributes to
the compression of the bubble. The vertical component
strength is maximum at the bubble tip where it is
directed towards the liquid phase and contributes to
the bubble elongation in the electric field direction.
The fstx and fstz variations are plotted against the
angular coordinateθ in figure 5b. No tangential electric
stresses act on the bubble equator (θ = ±90◦) or on

(a)

(b)

Figure 6. Horizontal and vertical components of the electric
stresses. (a) Dielectric bubble, (b) conducting bubble.

the bubble tip (θ = 0◦) because there is no electrical
free charge density on these locations. The horizontal
componentfstx , directed towards the vapour phase, has
a maximum value forθ ≈ 35◦ and a minimum one for
θ ≈−35◦. The vertical componentfstz, directed towards
the liquid phase, presents two maxima atθ =±55◦. The
tangential electric stress direction,fst, can be deduced
from fstx andfstz variations. This is obvious since the
bubble tip bears negative electrical free charges (the
bubble tip faces the positive electrode) and the electric
field direction is the same as the gravitational force,
the Coulomb stress (fst stress) generated on the bubble
interface is opposite to the electric field direction as it is
shown infigure 4a. Figure 6arepresentsfsx andfsz as
a function ofθ for a dielectric bubble (no electrical free
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charge density at the bubble interface,Y = 2) submitted
to a 20 kV·cm−1 electric field strength. The bubble
is compressed strongly near the equator (θ = ±90◦)
because the horizontal component of the electric stress is
stronger than the vertical one. Infigure 6bare shown the
horizontal and vertical components of the electric stresses
acting on a conducting bubble(X = 0.25).

For a dielectric bubble as well as a conducting bubble,
the normal electric stress causes a distortion of the
bubble. Whereas, the tangential electric stress, which is
the Coulomb stress, acts if the bubble interface bears
electrical free charges and it induces liquid movements
around the bubble and vapour movements within the
bubble. In the next section both the distortion and the
induced electroconvective movements are studied for a
conducting bubble immersed in an isothermal dielectric
liquid.

4. ELECTROCONVECTIVE MOVEMENTS
AROUND AND WITHIN A
CONDUCTING BUBBLE

The immersed-bubble problem is solved on the basis
of the creeping flow approximation. The basic assump-
tion of creeping flow, developed by Stokes [21], is that
inertia terms can be neglected in the momentum equation.
In such a flow, with stream velocityU and body lengthL,
pressure cannot scale with the dynamic term (ρU2) but
rather must depend upon a viscous term (µU/L). If the
Reynolds number is small (Re� 1, e.g., inertia terms are
negligible), the momentum equation which represents the
creeping flow is

∇P = µ∇2u (27)

to be combined with the incompressible continuity rela-
tion (equation (7)).

By taking the curl of the above equation, we obtain the
useful relation

∇2ω= 0 (28)

whereω= curlu is the vorticity vector. Thus the vorticity
satisfies Laplace’s equation in a creeping flow. In two-
dimensional Stokes flow, we can write [21]

ω =−∇2ψ (29)

whereψ is the stream function. The vorticity equation
(equation (28)) may be rewritten as

∇4ψ = 0 (30)

ψ is called biharmonic equation. In spherical coordi-
nates, equation (30) is written[

∂2

∂r2 +
sinθ

r2

∂

∂θ

(
1

sinθ

∂

∂θ

)]2

ψ = 0 (31)

This equation allows the determination of the velocity
profiles in both phases.

4.1. Velocity profiles in liquid and
vapour phases

The normal and tangential velocity componentsu and
v are related to the Stokes stream functionψ by

u= 1

r2 sinθ

∂ψ

∂θ
v =− 1

r sinθ

∂ψ

∂r
(32)

In order to solve equation (31), solutions can be found by
assuming the following form:

ψ = rn sin2 θ cosθ (33)

The solutions of equation (31) for the flow outside and
inside the bubble are respectively

ψl =
(
A
R4

r2 +BR2
)

sin2 θ cosθ

(34)

ψv =
(
C
r3

R
+D r5

R3

)
sin2 θ cosθ

The constantsA, B, C and D whose dimension is
a velocity are determined by the following boundary
conditions written at the liquid–vapour interface

ul = uv = 0
(35)

vl = vv

These equations allow for

A=−B = C =−D =U∗ (36)

U∗ has the dimension of a velocity.

By considering equation (36), the radial and orthora-
dial velocities in the liquid phase are given by

ul = U
∗R2

r2

(
R2

r2 − 1

)(
3 cos2 θ − 1

)
(37)

vl = 2U∗R4

r4 sinθ cosθ

In the vapour phase, the radial and orthoradial velocities
are expressed as follows:
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Figure 7. Velocity distributions within and around a conducting bubble. (a) Radial liquid velocity, (b) orthoradial liquid velocity,
(c) radial vapour velocity, (d) orthoradial vapour velocity.

uv = U
∗r
R

(
1− r2

R2

)(
3 cos2 θ − 1

)
(38)

vv =−U
∗r
R

(
3− 5r2

R2

)
sinθ cosθ

The radial and orthoradial velocities are shown infigure 7
as a function of the dimensionless radiusr∗ for θ = π/4.
In figure 7a, the radial velocityul in the liquid phase, di-
rected towards the vapour phase, decreases from the zero
value at the bubble interface (boundary condition) to a
negative minimum value. Then,ul increases and tends to
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zero far away from the bubble interface.vl variations are
shown as a function ofr∗ in figure 7b. vl decreases from
its maximum value at the liquid–vapour interface to zero
far away from the bubble. It appears that, near the bubble
interface, thevl values are higher than those oful . So, the
electroconvective movements around the bubble interface
are mainly due to the orthoradial component of the liquid
velocity. The radial vapour velocity,uv, is shown as a
function of r∗ in figure 7c. It increases from the bubble
centre, reaches a maximum value and decreases to the
zero value at the bubble interface (boundary condition).
The orthoradial vapour velocity,vv, decreases to a neg-
ative minimum value (figure 7d), then it increases to its
maximum valueU∗ at the bubble interface.

These velocity profiles in the liquid and vapour phases
are completely defined by the knowledge of the veloc-
ity U∗. This will be done by considering a force balance
at the liquid–vapour interface.

4.2. Force balance at the liquid–vapour
interface

The forces acting on the liquid–vapour interface are
mainly the electric forces and the viscous forces (the iner-
tia forces are negligible in the creeping flow approxima-
tion). The electric stresses are determined in Section 3.2.
The normal and tangential viscous stresses acting on the
liquid–vapour interface are

fvisn=−P + 2µ
∂u

∂r
(39)

fvist=µ
(
r
∂

∂r

(
v

r

)
+ 1

r

∂u

∂θ

)
(40)

P , the pressure acting on the liquid phase or the vapour
phase, is determined by integrating the momentum equa-
tions

−∇Pl + ρlg+µl∇2ul = 0 (41)

−∇Pv + ρvg+µv∇2uv = 0 (42)

and the following expressions are obtained:

Pl =Πl − ρlgr cosθ − 2U∗R2

r3
µl
(
3 cos2 θ − 1

)
(43)

Pv =Πv − ρvgr cosθ − 7U∗r2

R3 µv
(
3 cos2 θ − 1

)
(44)

whereΠl andΠv are the zero-field hydrostatic liquid and
vapour pressures.

Thus, the normal viscous stresses are

fvisnl=−Πl + ρlgr cosθ

+ 2U∗R2

r3
µl

[
1− 4R2

r2

](
3 cos2 θ − 1

)
(45)

fvisnv=−Πv + ρvgr cosθ

+ U
∗

R
µv

[
2+ r2

R2

](
3 cos2 θ − 1

)
(46)

The tangential viscous stresses in each phase are given by
equation (40)

fvistl =µl

(
−16

R4

r5 + 6
R2

r3

)
U∗ sinθ cosθ (47)

fvistv=µv

(
16
r2

R3
− 6

R

)
U∗ sinθ cosθ (48)

The equilibrium equations to be satisfied at the liquid–
vapour interface are

fst
∣∣
r=R + fvistl

∣∣
r=R − fvistv

∣∣
r=R = 0 (49)

fsn
∣∣
r=R + fvisnl

∣∣
r=R − fvisnv

∣∣
r=R + σ

(
1

r1
+ 1

r2

)
= 0

(50)

σ is the surface tension whiler1 andr2 are the principal
radii of curvature.

The balance of tangential stresses is written by con-
sidering equations (47)–(49)

−9ε0εrvE
2
0

(2+X)2 (YX− 1)sinθ cosθ

−10
U∗

R
(µl +µv)sinθ cosθ = 0 (51)

From this equation, an expression of the velocityU∗ is
obtained as a function of the applied electric fieldE0, the
dielectric permittivities, the electrical conductivities and
the dynamic viscosities of each phase

U∗ = − 9ε0εrvE
2
0(XY − 1)R

10(µl +µv)(2+X)2 (52)

U∗ is the maximum liquid velocity which occurs atθ =
π/4 on the bubble interface.

The maximum liquid velocity depends on the square
of the electric field strength and therefore does not
depend on the electric field polarity. Indeed, when the
polarity is inverted, the electric field direction and the
electrical free charges on the liquid–vapour interface are
also inverted. As a result, the Coulomb forces have the
same orientation and the liquid movement around the
bubble is unchanged (figure 2). The liquid flows from
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Figure 8. Electroconvective movements within and around a
conducting bubble.

the bubble tip to the equator. The streamlines are shown
in figure 8, for a 5 kV·cm−1 electric field strength. The
electroconvective movement direction, which is indicated
by arrows, is the same as that of the tangential electric
stresses (Coulomb stresses) and depends only on the
productXY . For the bubble, this product is generally
lower than 1.

From equations (45), (46) and (50), the equilibrium of
the normal stresses is as follows:

σ

[
1

r1
+ 1

r2

]
= (Πv −Πl)− (ρl − ρv)gR cosθ

+ 3(2µl +µv)

R
U∗
(
3 cos2 θ − 1

)
− 9ε0E

2
0(α cos2 θ − β)
2(2+X)2 (53)

By considering the hydrostatic pressure difference
(Πv −Πl) equal to 2σ/R, we obtain

σ

[
1

r1
+ 1

r2

]
= 2σ

R
− (ρl − ρv)gR cosθ

+ 3(2µl +µv)

R
U∗
(
3 cos2 θ − 1

)
− 9ε0E

2
0(α cos2 θ − β)
2(2+X)2 (54)

This relation can be rewritten by considering the Legen-
dre polynomials,Pn:

σ

[
1

r1
+ 1

r2

]
= a0P0(cosθ)+ a1P1(cosθ)+ a2P2(cosθ)

(55)

where

a0= 2σ

R
+ 3(3β − α)ε0E

2
0

2(2+X)2
a1=−(ρl − ρv)gR (56)

a2=− 3ε0E
2
0

(2+X)2
[

9

5

2µl +µv

µl +µv
(εlX− εv)+ α

]
From equation (55), we can determine the bubble defor-
mation in presence of an electric field. For small devia-
tions from a spherical shape, we can express the defor-
mation as

r =R+ ζ(θ) (57)

r is the local radius of curvature expressed as a function
of the initial spherical bubble radiusR andζ is the bubble
deformation that depends only on the angleθ . Thus we
have

1

r1
+ 1

r2
= 2

R
− 2ζ

R2 −
1

R2

(
1

sinθ

∂

∂θ

(
sinθ

∂ζ

∂θ

))
(58)

Puttingζ ∗ = ζ/R, µ∗ = cosθ , equation (58) is rewritten
as

2− 2ζ ∗ − d

dµ∗

[(
1−µ∗2) dζ ∗

dµ∗

]
= R
σ

2∑
n=0

anPn(µ
∗)

(59)

This equation may be solved to express the deforma-
tion simply in terms of the coefficients

ζ ∗ = R
σ

∑
n=2

anPn(µ
∗)

(2+ n)(1− n) (60)

The comparison between the bubble shapes with and
without electroconvective movements is shown infig-
ure 9 for 5 kV·cm−1 and 10 kV·cm−1 electric field
strengths. For these numerical results, the dielectric per-
mittivities ratio is equal to 1.8 (case ofn-pentane) and
the electrical conductivities ratio to 1. Initial spherical
bubble radius is 1 mm. For a 10 kV·cm−1 electric field
strength, the bubble shape is not ellipsoidal as for the
liquid–vapour interface without electrical free charges.
Also, it is predicted that the bubble deformation is more
pronounced in the presence of electroconvective move-
ments. The bubble deformation is shown infigure 10
for different values of the productXY . In these calcu-
lations,X = 1.8 andY varies from 1 to 4. The results
show the greatest bubble elongation for the highest value
of Y .
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(a)

(b)

Figure 9. Deformation of a dielectric and a conducting bubble
under a DC electric field. (a) E0 = 5 kV·cm−1, (b) E0 =
10 kV·cm−1.

5. CONCLUSION

We have investigated the effects of a uniform electric
field on bubbles. The electric stresses acting on conduct-
ing bubbles are analysed and compared with those act-
ing on dielectric bubbles. The normal electric stresses
cause a distortion of the bubble in the electric field di-
rection. Whereas, the tangential electric stresses, which
are the Coulomb forces, induce liquid movements around
the bubble and vapour movements within the bubble. The
electroconvective movements are analysed on the basis of
the creeping flow approximation. Thus, the momentum
equations are solved analytically. The balance of tangen-

(a)

(b)

Figure 10. Effect of the electrical conductivity on the bubble
deformation.

tial stresses in the presence of electroconvective move-
ments leads to a determination of a maximum liquid ve-
locity around the bubble. The equilibrium of the normal
stresses allows for a determination of the bubble defor-
mation. Numerical simulations are done in order to com-
pare the bubble shape with and without electroconvec-
tive movements. It is shown that the bubble deformation
is more pronounced in the presence of electroconvective
movements. The bubble elongation depends on the di-
electric permittivities as well as the electrical conductivi-
ties.
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APPENDIX

Electric stresses acting on the
liquid–vapour interface

1. Electric stresses acting on a nonconducting
bubble

The interfacial electric force acting on each phasej is
expressed as follows:

f sj = εj (n ·E)jEj −
εj

2
E2
j

(
1− ρ

ε

∂ε

∂ρ

)
j

nj (A.1)

The force resultantf s acting on the liquid–vapour inter-
face is

f s=
{
εl(n ·E)lE l − εl

2
E2

l

(
1− ρl

εl

dεl

dρl

)
nl

}
+
{
εv(n ·E)vEv − εv

2
E2

v

(
1− ρv

εv

dεv

dρv

)
nv

}
f s=

{
εlEln(Elnnl +Eltt l)− εl

2
E2

l

(
1− ρl

εl

dεl

dρl

)
nl

}
+
{
εvEvn(Evnnv +Evttv)

− εv

2
E2

v

(
1− ρv

εv

dεv

dρv
nv

)}
f s=

{
εlE

2
lnnl + εlElnEltt l

− εl

2

(
E2

ln +E2
lt

)
nl + ρl

2
E2

l
dεl

dρl
nl

}
+
{
εvE

2
vnnv + εvEvnEvttv

− εv

2

(
E2

vn+E2
vt

)
nv + ρv

2
E2

v
dεv

dρv
nv

}
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f s=
{
εl

2

(
E2

ln −E2
lt

)
nl + ρl

2

dεl

dρl
E2

l nl

+ εv

2

(
E2

vn−E2
vt

)
nv + ρv

2

dεv

dρv
E2

vnv

}
+{εlElnEltt l + εvEvnEvttv} (A.2)

If we consider the relations

nl =−nv
(A.3)

t l =−tv
equation (A.2) can be rewritten as

f s=
1

2

{
εl
(
E2

ln −E2
lt

)− εv
(
E2

vn−E2
vt

)
+ρl

dεl

dρl
E2

l − ρv
dεv

dρv
E2

v

}
nl

+{εlElnElt − εvEvnEvt}t l (A.4)

For a nonconducting bubble without electrical charges
at the liquid–vapour interface we have the following
relations (continuity of the electric displacement):

εlE ln = εvEvn
(A.5)

E lt =Evt

Therefore, equation (A.4) is written as

f s=
1

2

{
εl

(
1− εl

εv

)
E2

ln + (εv − εl)E
2
lt

+ρl
dεl

dρl
E2

l − ρv
dεv

dρv
E2

v

}
nl (A.6)

Thus,f s is a normal stress. For a nonpolar dielectric
fluid, the above relation is expressed by considering the
Clausius–Mossotti equation as

f sn=
ε0

2

{
εrl(1− εrl)E

2
ln + (1− εrl)E

2
lt

+ (εrl − 1)(εrl + 2)

3
E2

l

}
nl (A.7)

or

f sn= ε0

{
− (εrl − 1)2

3
E2

ln +
(εrl − 1)2

6
E2

lt

}
nl

=−ε0
(εrl − 1)2

6

{
2E2

ln−E2
lt

}
nl (A.8)

2. Electric stresses acting on a conducting
bubble

The normal electric stress is

fsn= ε0

2

{
εrl
(
E2

ln −E2
lt

)− εrv
(
E2

vn−E2
vt

)
+ (εrl − 1)(εrl + 2)

3
E2

l

}
(A.9)

By considering equations (18), (19), (20) and (21), the
following equations can be written:

E2
l =

9E2
0

(2+X)2
[
X2 cos2 θ + sin2 θ

]
E2

v =
9E2

0

(2+X)2
(A.10)


E2

ln −E2
lt =

9E2
0

(2+X)2
[
X2 cos2 θ − sin2 θ

]
E2

vn−E2
vt =

9E2
0

(2+X)2
[
cos2 θ − sin2 θ

] (A.11)

Then, the normal component of the electric stress acting
on the liquid–vapour interface is

fsn= 9ε0E
2
0

2(2+X)2
[
εrl
(
X2 cos2 θ − sin2 θ

)
− (cos2 θ − sin2 θ

)
+ (εrl − 1)(εrl + 2)

3

[
X2 cos2 θ + sin2 θ

]]
or

fsn= 9ε0E
2
0

2(2+X)2
[
(εrl − 1)2

3
+
{(

ε2
rl + 4εrl − 2

3

)
X2

−
(
ε2

rl − 2εrl + 4

3

)}
cos2 θ

]
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